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4. Results

1. Results with MC-based methods

1. Motivation

Signed Distance [1] and Occupancy Field [2,3] Networks can represent watertight surfaces with any

. . . MC-based - i
topology. They can be meshed with algorithms such as Marching Cubes (MC) [4] and Dual We apply Marching Cubes [4] to the output of our network, recovering more accurate shapes
Contouring (DC) [5], which require sign flips to detect a surface. compared to existing methods. We compute median Chamfer Distance and Image Consistency.
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cannot be meshed using traditional methods.
! 2. Results with DC-based methods
We relax the filtering step of DualMesh-UDF [5] and we use our pipeline as a simple filtering
strategy, removing the need for hyperparameter tuning when dealing with neural UDFs.
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fg4 ’93 MLP 3. Importance of noise during training 4. Meshing time
Dual Contouring-like steps Usg'y T Us ___ —Ugy U3 T It improves robustness to neural UDFs and For all methods except DCUDF, the
| : | SIS — it helps detect thin surfaces at low meshing time is orders of magnitude lower
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] ;( i (P —x) — di) We use watertight shapes from ABC [11] for training, in order to have both a UDF input and an SDF ground-truth.
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We normalize the field by the meshing resolution and inject noise to increase the network’s robustness. IResolution is doubled for Cars
’DCUDF can achieve better accuracy by removing the cutting step. However this would make the surface double layered.
MeshUDF is particularly suitable for garments DualMesh-UDF achieves impressive accuracy, UDF normalization:

but it can generate spurious triangles in more but it can miss parts of the surface if the

complex objects minimization fails to converge Lo = Z Z CE(MLPs(c), GTs(c)) UDFg(c) =UDFg(c)/voxel_size References
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