

1. Motivation

Contouring (DC) [5], which require sign flips to detect a surface.

2. Existing methods

MC-based

MeshUDF and CAP-UDF rely on handcrafted rules to find surface crossings inside cells.

MeshUDF is particularly suitable for garments but it can generate spurious triangles in more complex objects

DualMesh-UDF proposes a Dual Contouringlike optimization algorithm with UDF-specific heuristics.

Du	Dual Contouring-like steps							
Identify cells and sample gradients	Minimize E[x] cell-wise	Connect vertices using a heuristi						
	Mii	nimize:						

$$E[x] = \sum_{i=1}^{m} (\mathbf{n}_i \cdot (\mathbf{p}_i - \mathbf{x}_i))$$

DualMesh-UDF achieves impress but it can miss parts of the s minimization fails to converge

MeshUDF [6]

Ours+MC [4]

DMUDF [10]

Ours+D

Neural Surface Detection for Unsigned Distance Fields

Federico Stella, Nicolas Talabot, Hieu Le, Pascal Fua Computer Vision Laboratory, EPFL, Lausanne (Switzerland)

We aim to directly apply SDF meshing algorithms on a UDF by locally turning it into a Pseudo-SDF with a data-driven pipeline.

Ve use watertight shapes from ABC [11] for training, in order to have both a UDF input and an SDF ground-truth. Ve normalize the field by the meshing resolution and inject noise to increase the network's robustness.

$$\mathcal{L}_{\Theta} = \sum_{\mathcal{S} \in \mathcal{D}} \sum_{c \in \mathcal{S}} CE(MLP_{\mathcal{S}}(c), GT_{\mathcal{S}}(c))$$

train the network with 80 shapes for **1 minute** on a single GPU. It can also be trained on **1 shape** with slitghly worse, but l usable, results.

Traditional meshing algorithms can be applied to the output with few modifications.

Filtering step

$$(-d_i)^2$$
 We
sive accuracy,
surface if the
We
Surface If the
We
Surface If the
We
Surface If the

UDF normalization:

$$UDF_{\mathcal{S}}(c) = UDF_{\mathcal{S}}(c)/voxel_size$$

Noise injection:

 $GT_{\mathcal{S}}(c) = GT_{\mathcal{S}}(c) * (1 + N(0, 1))$

Results with MC-based methods

We apply Marching Cubes [4] to the output of our network, recovering more accurate shapes compared to existing methods. We compute median Chamfer Distance and Image Consistency.

F ² [8]	MeshUDF [6]	Ours+MC[4]	GT			ARC	[11]	MON	[[19]	Com	[12]	MON	autodoa	Cora	utodoa
50			6	Res.	Method	$CD \downarrow$	$IC \uparrow $	CD ↓	$\operatorname{IC}\uparrow$	$CD \downarrow$	$IC \uparrow$	CD ↓	IC ↑	$ CD \downarrow$	IC \uparrow
				32^{1}	$\begin{array}{c} \text{CAP-UDF [7]} \\ \text{MeshUDF [6]} \\ \text{DCUDF}^2 [8] \\ \text{Ours} + \text{MC [4]} \end{array}$	1070 <i>48.8</i> 1200 19.0	51.0 <i>89.4</i> 78.0 91.8	138 18.1 603 8.09	64.9 <i>91.0</i> 76.0 92.0	54.1 20.9 559 9.89	79.3 84.4 69.7 87.4	219 18.4 503 8.37	57.2 90.9 77.0 91.9	191 24.1 318 13.2	71.9 <i>86.4</i> 83.7 87.3
		-			GT + MC	17.6	91.8	-	-	-	-	_	-	-	_
T		7		64^1	$egin{array}{c} { m CAP-UDF} & { m MeshUDF} & { m DCUDF^2} & { m Ours} + { m MC} & { m Ours} & { m MC} &$	239 6.76 291 4.46	73.4 <i>94.7</i> 86.5 95.4	12.0 <i>3.55</i> 155 2.10	85.4 94.7 85.6 95.5	14.3 7. <i>51</i> 169 4.47	87.9 <i>89.8</i> 81.3 91.2	18.8 <i>3.89</i> 92.4 2.64	79.4 <i>94.1</i> 87.3 94.7	58.1 <i>14.9</i> 55.0 10.0	83.2 88.6 87.3 <i>88.5</i>
					GT + MC	4.52	95.7	-	-	-	-	-	-	-	-
B	a dest			128^{1}	$egin{array}{c} { m CAP-UDF} & \ { m MeshUDF} & \ { m DCUDF}^2 & \ { m Ours} + { m MC} & \end{array}$	21.3 2.97 44.6 2.52	94.1 <i>97.1</i> 92.5 97.4	1.99 1.59 26.1 1.40	95.7 <i>96.7</i> 92.3 97.1	4.19 <i>3.61</i> 113 3.13	93.0 92.8 87.7 94.2	3.13 2.42 6.34 2.06	91.8 95.0 95.4 <i>95.2</i>	39.9 16.7 355 14.5	87.6 88.6 78.2 <i>87.9</i>
	02.5			GT + MC	2.74	97.4	-	-	-	-	-	-	-	-	
				256^{1}	$egin{array}{c} { m CAP-UDF} & { m MeshUDF} & { m DCUDF}^2 & { m Ours} + { m MC} & { m Ours} \end{array}$	2.53 2.42 11.3 2.33	97.8 <i>98.0</i> 95.0 98.2	1.40 1.36 8.09 1.33	97.7 97.7 94.8 97.9	3.41 3.10 104 3.03	95.0 95.0 89.5 95.8	2.15 2.05 3.40 2.02	94.6 94.8 91.1 94.8	37.8 92.2 1930 <i>62.2</i>	87.5 81.7 36.0 <i>83.8</i>
	- Contraction				GT + MC	2.55	98.2	_	_	_	_	_	_	-	_

Results with DC-based methods

We relax the filtering step of DualMesh-UDF [5] and we use our pipeline as a simple filtering strategy, removing the need for hyperparameter tuning when dealing with neural UDFs.

Res.	Method	ABC [1 CD \downarrow	$II IC \uparrow $	MGN [CD↓	12] IC ↑	$\begin{array}{c} \text{Cars} \\ \text{CD} \downarrow \end{array}$	[13] IC ↑	MGN a CD ↓	$\operatorname{IC}\uparrow$	$\begin{array}{c} \text{Cars a} \\ \text{CD} \downarrow \end{array}$	utodec. IC \uparrow
32^{1}	UNDC [9]	11.8	92.4	6.81	89.7	7.60	88.2	10.8	86.2	14.9	86.4
	DMUDF [10]	9.83	97.0	2.55	94.3	4.15	92.2	339	69.3	805	45.3
	DMUDF-T [10]	-	-	-	-	-	-	2.84	94.0	6.96	89.8
	Ours+DMUDF [10]	9.66	97.0	2.74	94.2	3.92	92.3	<i>3.00</i>	94.0	6.73	89.8
64 ¹	UNDC	0.783	95.8	0.926	92.9	1.35	91.0	1.83	90.7	16.8	85.9
	DMUDF	<i>0.579</i>	98.6	<i>0.195</i>	96.9	<i>0.813</i>	<i>94.1</i>	216	68.4	954	45.5
	DMUDF-T	-	-	-	-	-	-	0.805	95.4	5.52	<i>89.5</i>
	Ours+DMUDF	0.574	98.6	0.194	96.9	0.787	94.2	0.803	95.4	5.43	89.8
128^{1}	UNDC	0.0877	97.2	0.140	94.7	0.195	94.0	1.06	88.7	57.7	74.8
	DMUDF	<i>0.00450</i>	99.0	0.0194	98.0	<i>0.173</i>	95.7	176	66.4	846	45.1
	DMUDF-T	-	-	-	-	-	-	<i>0.722</i>	95.1	10.6	87.0
	Ours+DMUDF	0.00492	99.0	0.0185	98.0	0.169	95.7	0.713	95.1	10.0	88.2
256^{1}	UNDC DMUDF DMUDF-T Ours+DMUDF	0.0146 0.000143 - 0.000166	98.0 99.1 - 99.1	0.0251 0.00200 - 0.00199	96.5 98.4 - 98.4	0.0731 - 0.0362	- 96.3 - 96.6	1.68 167 <i>0.834</i> 0.804	82.3 63.9 <i>93.0</i> 93.6	- 871 37.9 37.7	43.0 79.2 82.8

3. Importance of noise during training It improves robustness to neural UDFs and it helps detect thin surfaces at low

4. Meshing time

For all methods except DCUDF, the meshing time is orders of magnitude lower than the UDF query time. Even so, when paired with MC, our meshing time is around 2x faster than the fastest MC-based method MeshUDF.

²DCUDF can achieve better accuracy by removing the cutting step. However this would make the surface double layered.

- [1] DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, Park et al., CVPR 2019 [2] Occupancy Networks: Learning 3D Reconstruction in Function Space, Mescheder et al., CVPR 2019 [3] Learning Implicit Fields for Generative Shape Modeling, Chen et al., CVPR 2019
- [4] Marching Cubes: a High Resolution 3D Surface Construction Algorithm, Lorensen and Cline, SIGGRAPH 1987
- [6] MeshUDF: Fast and Differentiable Meshing of Unsigned Distance Field Networks, Guillard et al., ECCV 2022
- [7] Learning Consistency-Aware Unsigned Distance Functions Progressively from Raw Point Clouds, Zhou et al., NeurIPS 2022 [8] Robust Zero Level-Set Extraction from Unsigned Distance Fields Based on Double Covering, Hou et al., SIGGRAPH Asia 202
- [10] Surface Extraction from Neural Unsigned Distance Fields, Zhang et al., CVPR 2023 [11] ABC: A Big CAD Model Dataset for Geometric Deep Learning, Koch et al., CVPR 2019
- [12] Multi-Garment Net: Learning to Dress 3D People from Images, Bhatnagar et al., ICCV 2019 [13] ShapeNet: An Information-Rich 3D Model Repository, Chang et al., 2015